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2. Objectives 

The overall objectives of the proposed three-year program were to investigate the coherent 
control of semiconductor normal-mode microcavities for potential applications in all-optical 
switching. We have carried out an exhaustive investigation of coherent control using phase-locked 
femtosecond optical pulses. We have detemined the limiting factor governing the coherent control 
for all-optical switching to be excitation-induced dephasing [EID] (published in Appl. Phys. Lett.). 
We have demonstrated picosecond switching using phase-controlled pulses, but the EID in present 
quantum-well-based device structures will limit the practicality of such a switch; potentially future 
quantum-dot based microcavities will eliminate this problem. 

As part of the program, we carried out an extensive series of experiments investigating the 
detailed microscopic processes responsible for the nonlinear optical response of the microcavity 
system. This work was performed in collaboration with the theory group of Stephan Koch, and has 
been submitted to Phys. Rev. B (since it is not yet published, we have included a detailed discussion 
in section 4 of this report). We have found excellent agreement with microscopic models based on 
coherent-% (5) and 2nd-Born models to include the effects of incoherent carriers. 

We also performed a series of experiment which probe the normal mode dynamics via the 
resonantly excited luminescence, or secondary emission. We developed a preliminary 
phenomenological based on scattering of cavity-polariton populations which showed a high degree 
of coherent control in the system, and the ability to control the emission between the normal modes. 
Since the concept of polariton populations is fundamentally problematic from a basic theoretical 
point of view, we have been working with Mackillo Kira and Stephan Koch to understand the 
results from a microscopic theory based on the fully quantized semiconductor luminescence 
equations. These results are still being written up for Phys. Rev. Lett. 

The most surprising discovery of this program was that coherent control could lead to the 
generation of a completely novel kind of coherence in the system: namely intraband coherences 
driven by quantum correlations between the cavity field and the carrier populations. These 
intraband coherences turned out to be central to understanding the nature of light emission in 
semiconductors. This effect also could be thought of as the first truly quantum-optical effect (i.e. 
requiring the quantization of the electromagentic field) in semiconductor microcavity physics; as 
such it may potentially lead to new and interesting phenomena and applications (such as squeezing 
and entanglement) in microcavities. This work was published in Phys. Rev. Lett. 

3. Status of Effort 

The three-year research program has been completed. As discussed in the previous section, 
we still have two papers in the pre-publication stage; all other work carried out under the program 
have been published (see sections 6 and 7 of this document for a list). 



4. Accomplishments/New Findings 
The following discusses in detail the findings of the final year of the program which have 

not yet been published. 
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ACCOMPLISHMENTS AND NEW FINDINGS 

Coherent control and optical nonlinearity of quantum-well 
microcavity 

1 Overview 

The objective of this project is to accomplish ultrafast all-optical switching in devices based on 
semiconductor quantum-well structures. In previous years, we have demonstrated that the switching 
rates are able to reach as high as 100 Gigabits/sec which is at least 10 times faster than most 
advanced current technology [1, 2, 3]. The physical principle of the optical switch is the coherent 
control of exciton population in semiconductor quantum-well(QW). We demonstrated that the 
signal of coherent control of the cavity-polariton modes of a QW microcavity is at least three orders 
of magnitude larger than of the exciton of multiple QW, thus the signal can be observed in the direct 
measurement of reflectivity without any complex signal amplification scheme [3]. The large signal 
and simple detection scheme make it possible for us to build compact device for optical switching. 
Besides, due to the mode-coupling of cavity and exciton in QW microcavity, the signal frequency 
can be separated from control frequency, which prevents signal cross-talk and coherent artifacts [4]. 

In order for profound understanding of the coherent control in QW microcavity, We have in- 
vestigated various optical nonlinearities of the system to characterize the optical properties of the 
samples. As the results of the thorough investigation, we achieved fundamental understandings of 
the carrier dynamics and optical properties of the light-matter coupled system. We summarize the 
findings in the following sections. 

2 Coherent control and nonlinear response of secondary 
emission 

In the nonperturbative regime of quantum-well (QW) micro cavities, the strong light-matter inter- 
action results in the cavity polariton modes [5]. The normal modes of QW microcavity are often 
regarded as a coupled harmonic oscillator since the normal modes are equal admixture of exciton 
and cavity mode [6]. However, only the exciton mode is responsible for the optical nonlinearity 
of the QW microcavity, thus, whether the exciton mode is coherently controllable, or each normal 
mode can be controlled independently is a fundamental question. Besides, due to the cavity en- 
hancement, high carrier density can be easily achieved in the QW microcavity. Thus, manybody 
interaction becomes crucial to understand the carrier dynamics of the cavity polaritons. Espe- 
cially, the suppressed carrier scattering of the lower mode polaritons has been reported in several 
articles [7, 8, 9]. 

We have studied the coherent control of the polariton secondary emission from a QW microcavity, 
and investigated the nonlinear response of the emission. In order to see if only the exciton mode 
or each polariton mode is coherently controllable, we vary the temporal pump pulse separation, 
thus change the fringe frequency of the pump spectrum, and observe the secondary emission from 
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the sample. We refer to the emission as photoluminescence (PL) of normal modes. We also study 
the carrier-carrier interaction dynamics by investigating the intensity of the polariton secondary 
emission within the nonperturbative regime. We modulate the spectrum of the pump pulses using 
a pulse shaper, which enables us to pump each mode selectively, or both modes together. Our 
experimental results show the significant asymmetry in the PL of the lower and the upper polariton 
modes between the different pumping schemes (single and double modes pumping), which indicates 
an asymmetric carrier-carrier scattering mechanism of the normal modes. 

The sample under investigation has two Ino.04Gao.96As QW's embedded in the cavity of dis- 
tributed Bragg reflectors (14 (16.5) periods of GaAs/AlAs on top (bottom) mirrors). The QW 
exciton resonance energy and linewidth are 1.487 ev and 0.7 meV at 10 K respectively. The nor- 
mal mode splitting is 4.5 meV at zero detuning. The pump pulses were the output of a 82-MHz 
mode-locked Ti:sapphire laser producing 75-fs pulses centered at 831 nm. In the coherent control 
experiment, two pump pulses are generated by a Michelson interferometer, and the relative phase of 
the pump pulses is controlled by a piezoelectric translator. To investigate the asymmetry of normal 
modes PL intensity, a pulse shaper tailored the pump spectrum to enable that the pump pulse was 
resonant with only one normal mode. The spectral filter provided a very high contrast ratio, so that 
the intensity of the pump at the other mode was less than 10~3 of its intensity at the lower (upper) 
mode; hence any effects due to spectral overlap to the other mode is completely unobservable. The 
pump pulses irradiated on the sample near normal angle of incidence and the pump diameter was 
35 /xm. PL was collected at the normal angle and spectra were recorded on an optical multichannel 
analyzer. 

In the linear response regime, the normal modes of QW microcavities are considered as ones 
of a coupled harmonic oscillator from the classical point of view. Though, it is not clear whether 
the classical perspective can be applied to the nonlinear optical regime, because only the excitonic 
components of the polariton modes are responsible for the nonlinear response of the normal modes. 
With the assumption of the classical picture applicable to the nonlinear case, the adjustment of 
the temporal separation of the two pump pulses makes it possible to control coherently each po- 
lariton mode with an independent manner, since each normal mode carries their own characteristic 
frequency. Figure 1 shows the time-integrated PL of the polariton modes when the temporal pump 
pulse separation (r12) is 0.0, 0.47, and 0.90 ps, and the detuning is 0.0 meV. The phase in the 
figures denotes the relative phase of the pump pulses at the resonance frequency of the lower mode 
polariton. In frequency domain, the fringe frequency of the two pump pulses is inversely propor- 
tional to T12,thus the fringe frequency of TI2=0.90 (0.47) ps corresponds to (twice of) the vacuum 
Rabi splitting of the QW microcavity. Figure 1 shows the coherently controlled PL of the normal 
modes for three different temporal separation of the two pump pulses. The cavity detuning is set 
to 0.5 meV where the PL intensities of the lower and the upper modes are comparable. In Fig. 1(a) 
when the two pump pulses are overlapped, thus, the fringe frequency is infinite, the pump pulse 
intensity varies with the cosine square of the relative phase of the two pump pulses. PL of the both 
modes goes up and down together as the phase varies. When Ti2=0.47 ps, then the fringe maximum 
of the two pump pulses falls into one of the normal modes resonance frequencies and the minimum 
hits the other. Figure 1(b) shows that the lower (upper) mode PL is maximum (minimum) when 
A(f>=0. This indicates that each polariton mode is controlled coherently and independently. Fi- 
nally, when we increase the pulse separation to 0.90 ps (Fig. 1(c)), the fringe maxima or minima fall 
into the resonance frequencies of the polariton modes simultaneously, and the PL intensity of the 
normal modes are maximum (minimum) at Ac/>=0 (IT) together like when the two pump pulses are 
overlapped. The PL intensity of the polariton modes is almost identical with the one of Ti2=0.0 ps. 
Couple of features are noteworthy in Fig 1. First, there is a third peak when the two pulses are 
overlapped, and it disappears when the pulse separation is 0.9 ps even though the PL intensity of 
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Figure 1: Coherently controlled PL spectra of the normal modes as a function of the relative phase 
between the two pump pulses when the temporal separation of the two pump pulses is (a) 0.0 (b) 
0.47 and (c) 0.90 ps. 
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Figure 2: The secondary emission of the normal modes for the selective mode pumping. The pump 
fluence is 0.07 mJ/cm2 when the both modes are pumped. Inset shows the pump spectra of single 
mode and both modes pumping. 

the polariton modes is almost identical. According to Ell et al. [10], the third peak is sensitive to 
the density of the coherent polariton population. As the pulse separation increases, coherent pop- 
ulation decreases because of the dephasing. Thus, the third peak decays with the pulse separation. 
Secondly, there is a striking phenomenon when the pulse separation is 0.47 ps. Figure 1(b) shows 
that the lower mode PL is much stronger than the upper mode PL when A</>=0. In this case, the 
upper mode PL intensity is almost same with the ones of r12=0.0 and 0.90 ps. Since the fringe 
maximum (minimum) of the pump pulses falls into the resonance frequency of the lower (upper) 
mode polariton when A0=O, the experimental result implies that there is a significant increase of 
the lower mode PL intensity when only the lower mode is pumped. 

To investigate the enhancement of the lower mode PL, we modify the pump spectrum of single 
pump pulse using the pulse shaper, which allows us to pump each mode selectively, or both modes 
together. The pump spectra are shown in the inset of Fig. 2 for each case. The modulation 
of the spectrum does not affect the pump intensity at the wavelength of the normal mode of the 
unmodulated side. Figure 2 shows the comparison between the lower and upper mode PL intensities 
when each mode or both modes are pumped when the cavity detuning is 0.0 meV and the pump 
fluence is 0.07 mJ/cm2 where the differential reflectivity of the normal modes is less than 1 %. 
Clearly, the lower mode PL is substantially stronger when only the lower is pumped than of the 
both modes pumping, though the upper mode luminescence shows little effect of the different 
pumping schemes. 
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Figure 3: (a) experimental and (b) theoretical results of PL intensity vs. pump fluence. Lower 
mode PL when the lower mode (closed circle) and both modes (open circle) are pumped. Upper 
mode PL when the upper mode (closed square) and both modes (open square) are pumped. 



For further study of the PL with different pumping schemes, we measured the time integrated 
PL of the normal modes for various pump intensity. Each pump pulse has the pulse duration of 
85 fs(both modes pumping) and 190 fs (single mode pumping). Figure 3 shows the temporally 
and spectrally integrated PL intensity of polariton modes as a function of pump power when the 
detuning is 0.0 meV. In Fig 3(a), we compare the lower and upper mode PL intensities between 
the cases of the single mode and both modes pumping schemes. When the both modes are pumped 
simultaneously, the PL intensity shows some transition effect around 0.6 /iJ/cm2. According to 
the PL spectra analysis, the third peak appears around the same intensity and the PL intensity 
increases nonlinearly above the pump fluence. Our main discussion will be maintained below the 
critical fluence of the third peak. In the reflectivity measurement, the differential reflectivity of the 
normal modes spectra is less than 10 % below the critical pump fluence. In case of the single mode 
pumping, the pump fluence is measured before the pump spectrum is modified. The lower mode PL 
intensity of the lower mode only pumping scheme is much stronger than of pumping both modes. 
On the other hand, the upper mode PL intensity of the upper-mode only pumping scheme shows 
little difference with the one of both modes pumping scheme. 

In order to understand the asymmetric behavior of the PL of the normal modes, we investigate 
the polariton dynamics as developing phenomenological rate equations of three-level system which 
consists of the lower mode, the upper mode and large in-plane momentum states which represent 
exciton reservoir. 

dNu   =   Pu(t) - CtTNu - WUUC
2

UN
2

U - W^CvGNM - WUXCUNUNX 
dt 

Pi(i) - CuTNi - WuCfN't - WrtCuGNuNt - WlxQN,Nx 
dNi „^     „„„     „r „2M2 

dt 

^   =   -r*iVx + 2WulCuClNuNl + WixCiNiNx + WUXNUNX + WUUC
2

UN
2

U + WuCfN? 

Nu and TV; represent the upper and lower mode polariton population respectively. Nx is the exciton 
population of the reservoir states. Pu(t) and F/(i) describe the resonant pumping to the upper and 
lower mode. Since the pump beam is illuminated on the sample near normal angle of incidence and 
the pump spectrum is tuned to the normal modes resonantly, we assume that there are no carriers 
excited in the large in-plane momentum states. In a rough approximation, we describe the polariton 
decay rate by a linear combination of a cavity photon and an exciton decay rate weighted by the 
exciton and the photon component of mixed state [11]. Cu and Q are the coefficients of exciton 
proportion of the upper and lower modes. Followings are the expressions for Cu and C(: 

Ci 

1 y/1 + [8/gf - (5/9) 

2 y/l + [5/gf 

1 1 
2Jl + (6/g)*(yJl + (6/g)*-(5/g)) 

where 5 is cavity detuning and g is hCl/2 (HÜ is normal mode splitting at zero detuning). Since 
cavity life time is much shorter than exciton life time, the upper mode and the lower mode decay 
rate can be approximated by QT and CUT respectively where T is the cavity decay rate. W.^ 
is the scattering rate between the states i and j to transfer the states % and j to state x where 
i and j stands for u (upper mode), I (lower mode) and x (reservoir exciton states). Since only 
the exciton component of the polariton modes contributes to the carrier-carrier scattering, the 
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Figure 4: Schematics of the carrier-carrier scattering 

scattering is weighted by the exciton component of the carriers. In the resonant pumping regime, 
we can neglect the scattering of reservoir excitons via acoustic phonons into the polariton states 
because the scattering rate («0.002 ps 2) [12] is substantially smaller than the radiative decay rate 
of the polariton modes. 

We assumed that the transient PL intensity is proportional to the carrier density, thus the 
time-integrated PL intensity is calculated by temporally integrating the carrier density. Figure 3(b) 
shows the simulation result when the detuning is zero. The qualitative agreement between the 
experiment and the simulation is excellent. The simulation reproduces well the enhancement of 
the lower mode PL intensity when only the lower mode is pumped comparing with the one of the 
both modes pumping. Also, the upper mode PL intensity of only the upper mode pumping is not 
much different with the PL intensity when the both modes are pumped. Among the parameters, 
T, Tx, Cu, Ci are the well-known values. Thus, only the carrier scattering rates could be the fitting 
parameters. When only the lower mode is pumped, the PL intensity is linearly proportional to 
the pump fluence, thus all the nonlinear scattering terms are negligible. Especially, since the lower 
mode population is not zero, WLL should be negligible. This can be easily understood because 
of the energy barrier from the lower mode polariton states to the exciton reservoir states. The 
suppression of the lower mode polariton scattering has been reported in [7, 8, 9]. Wui also can be 
neglected because of the insensitivity of the upper mode PL to the pumping scheme. It turned out 
that Wuu and Wix are dominant parameters. Wux also affects the result of the simulation, but, it 
is not as crucial as Wuu and Wui. The nonlinear scattering terms cause the saturation of the PL 
intensity as the pump fluence increases. Followings are the parameters used in the simulation: 

• Ct=Cu=0.5 : 6=0.0 meV 

• T=0.2 ps"1 : Tc=5 ps 

• rx=0.005 : Tx=200 ps 

• Wuu=Wlx=5 ps-1, Wux= 5 ps"1, Wul=0 ps"1 

Figure 4 shows the graphical schematics of the carrier scattering mechanism. Clearly, the scat- 
tering between the lower mode polariton and the reservoir exciton is the only mechanism to kick the 
lower mode polaritons out of the states. Thus, when only the lower-mode is pumped, large number 
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of lower-mode polaritons are remained in the initial state, so the PL intensity is quite strong. Also, 
due to the lack of the nonlinear scattering, the PL intensity increases linearly with the pump fluence. 
On the other hand, when the both modes are pumped simultaneously, the upper mode polaritons 
are scattered out of the states through the u-u and u-x scattering, and the lower-mode polaritons 
can be decayed to the reservoir states through l-x scattering. Thus, the PL intensity saturates at 
high excitation level. The negligible Wui is crucial to explain the insensitivity of the upper mode 
PL to the pumping scheme because the insensitivity is the result of the lack of the direct scattering 
mechanism between the lower and upper mode. Primarily due to u-u scattering and also due to 
u-x scattering, the PL intensity saturates at high excitation level. 

We demonstrate the coherent control of the cavity polariton PL, which confirms that each 
polariton mode can be controlled independently. The selective mode pumping scheme shows the 
stronger lower mode PL of the lower mode pumping than of the both modes pumping. On the 
other hand, the upper mode PL is insensitive to the pumping scheme. The asymmetric behavior 
of the polariton PL can be explained by the nonlinear carrier scattering. The rate equations of the 
three level system shows that the upper mode polariton scattering and the scattering between the 
reservoir exciton and the lower mode polariton is essential to explain the experimental results. 

3    Coherent Optical Nonlinearities in Normal-Mode Micro- 
cavities 

When a quantum-well (QW) exciton transition is resonant with a single mode of a high-Q micro- 
cavity, the linear response of the coupled system may be described in terms of normal modes or 
cavity polaritons [5]. The nonlinear response of these systems has often been discussed in terms 
of "polaritonic nonlinearities" [13, 14]. At the same time, tremendous progress has been made in 
understanding the microscopic origin of the polarization and intensity dependent nonlinear optical 
response in bare QWs, including self-consistent models of Coulomb correlation-induced nonlineari- 
ties in the coherent regime [6, 15, 16]. It is therefore desirable to investigate the nonlinearities in the 
normal-mode coupling (NMC) regime of QWs in a microcavity on the same level and to determine 
if the microscopic theories accounting for the bare-QW response also quantitatively account for the 
normal-mode nonlinear response. 

In this section we discuss the coherent nonlinear optical response of a QW microcavity in the 
NMC regime. The changes in the reflection spectrum of a weak probe pulse are analyzed for 
various pumping conditions, where the selective excitation of only the lower or upper normal mode 
is compared with the case of both-mode excitation. The dependence on the pump intensity is 
studied for both co- and cross-circular polarization of probe and pump pulses. Furthermore, the 
temporal dependence of the nonlinearites on the pump-probe delay is discussed. 

3.1     Theory in Second-Order Born Approximation 

For a description of an external light field interacting with QWs embedded in a microcavity, the 
solution of Maxwells equations can be formulated in terms of the macroscopic QW polarization as 
discussed in detail in Ref. [6]. In a Bloch basis, the macroscopic QW polarization PQW{Z, t) can be 
calculated from the QW electron-hole transition amplitude P^{t) according to 

PQW(Z, t) = Uz)\2 i Y, d7k(i) + c.c. (1) 
15   k 

where k is the in-plan carrier momentum, dOT is the dipole matrix element, and S defines the 
normalization area of the QW. The space dependence of the macroscopic QW polarization is given 



by the confinement wavefunction |£(z)|2 where only resonant interaction with the lowest subband 
will be considered. 

The equation of motion for the transition amplitude Pk(t) 

ih~-ek(t)-eh
k(t) a(«) + [i-/£-/£] fik(0 

= - irk pk(t) + i£ rk,k. pk+k>{t) (2) 
k' 

contains the renormalized single-particle energies of electrons (a = e) and holes (a = h), 

4(t) = 4-4E^-*#(0. (3) 
^ k' 

and the renormalized optical Rabi energy 

nk{t) = dCT EQW(t) + ^Y1 v*-v MO- (4) 

where Vk is the quantum-well matrix element of the Coulomb potential and EQH/(£) is the optical 
field at the QW position, that has to be calculated self-consistently from Maxwells equations. 

The occupation probabilities for electrons and holes fk (t) can be obtained from the kinetic 
equation 

^|/kW + nk(t)K(t)-W)Mt) (5) 

=   t {sr (t) [1 - /£(«)] - Sf •°(t)/k°(t) + X?>a(t)} • 

Without the terms on the RHS, which will be discussed later in this section, Eqs. (2) and (5) are the 
semiconductor Bloch equations in Hartree-Fock approximation. Two-level Bloch equations for free- 
carrier transitions of the individual fc-states are recovered, when all Coulomb terms are dropped. 
On the other hand, the Hartree-Fock Coulomb interaction introduces excitonic resonances, since 
in the absence of population effects, Eqs. (2) and (4) reduce to a momentum-space Schrödinger 
equation for the exciton relative motion. 

To describe a pump-probe situation with two optical field components propagating in directions 
kpump and kpro{,e, a Fourier decomposition can be used [17] 

Etota'(r, t) = E(r, £)e
ik^r + E(r, t)eik"^r. (6) 

Since normal-mode effects are most prominent for optical fields perpendicular to the dielectric cavity 
mirrors, in the following we consider "nearly" normal incidence with a small angle between pump 
and probe beams. 

In the weak-probe field limit, Eqs. (l)-(5) can be used to describe the nonlinear dynamics 
of the pump pulse where PQW(Z,£) and Pk(t) are now the pump-field induced macroscopic QW 
polarization and transition amplitude, and F,QW(t) is the spatial Fourier component of the pump 
field at the QW position. 

Assuming that the probe field is weak such that only terms linear in the probe field have to be 
considered, probe field induced changes of the carrier occupation probabilities fk can be neglected. 
However, the combined action of pump and probe fields (and their induced polarization components) 
leads to Fourier components of the carrier population Sfk   oc et'k'""*",_k'",m',)'r which are related to 



population pulsations [18]. These Fourier components enable the scattering of the pump field into 
probe direction as well as coupling the pump-induced polarization to the probe field. They are also 
responsible for a diffracted four-wave mixing signal which will not be considered in the following. 

As for the pump pulse, the reflected and transmitted field of the probe pulse can be obtained 
from Maxwells equations using the Fourier component of the macroscopic QW polarization for the 
probe field 

PQw(z,t) = |£(*)|2 ^E d*cvW) +C.C. (7) 

The equation of motion for the corresponding transition amplitude, 

8 
m~- eUt) -4(t) Pk(t)   +    [l-/«-/£] fik(i) 

- [ii(t) + 4(t)} pk(t) - [6% + sft] nk(t) 

-iTkPk{t) + t£ rk,k,ä+k'(t) 

- tfk Pk{t) + iJ2 fkik, FkM*l (8) 
k' 

contains the renormalized optical Rabi energy of the probe field 

nk{t) = dOT EQW(t) + -J2 vk_k, Pk,{t) (9) 
0 k' 

where EQW(<) is the probe field at the QW position. 
With the last term on the LHS of Eq. (8), that contains the 6f^_' Fourier components of the 

carrier populations, the generalized Rabi energy of the pump field directly influences the probe polar- 
ization. While the carrier occupation probabilities f^'h lead to Hartree-Fock energy renormalizations 
according to Eq. (3), the additional Fourier components 6fk also introduce new renormalization 
terms 

£k(*) = -4z ^-k'tf/k'W, (io) 
ö k' 

which mediate the direct entering of the pump induced transition amplitude Pk(t) on the LHS of 
Eq. (8). The quation of motion for the 5f^'   Fourier components of the carrier populations is given 
by 

ih-ss^t) + nk(t)p^t)-n*k(t)Pk(t) 

+  irW[i-/£W]-sr''a(t)Ä(t) + ^W} (ii) 

where the second and third term on the LHS clearly reveal the combination of the pro&e-induced 
generalized Rabi energy with the pump-induced polarisation and vice versa as the driving source of 
ö/k   ■ 

To consider the Coulomb interaction beyond the mean-field or Hartree-Fock level, we use in 
this section an approximation scheme where all correlation terms up to quadratic order in the 
screened Coulomb interaction are considered. This scheme allows the inclusion of interaction- 
induced dephasing due to carrier-carrier scattering and higher-order polarization interaction as well 
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as the corresponding dynamic energy renormalizations beyond the Hartree-Fock level. If a Markov 
approximation is used (which for the experimental situation discussed below practically does not 
influence the results), in the incoherent limit the correlation terms reduce to Boltzmann scattering 
integrals as well as generalized Coulomb enhancement and band-gap renormalization terms [6]. 

For coherent excitation conditions, the dynamics of the coherent excitonic polarization and the 
coherently driven carrier population under the influence of carrier-carrier scattering and nonlinear 
polarization interaction can be studied. Note that the derived terms are not limited to certain 
powers of the exciting field. On the other hand, the truncation in terms of powers of the screend 
Coulomb interaction excludes the consideration of biexcitonic bound states. 

The aim of this paper is to demonstrate to what extend this so-called second-order Born approx- 
imation can be used to describe the coherent nonlinear response of QW excitons in a microcavity 
in comparison to the alternative approach discussed in Section 3.2. 

The correlation terms on the RHS of Eq. (2) are either diagonal in the carrier momentum, 

rk   =   ^E     E    9{ea
k + eb

k,+kll-ei„-ea
k,+k){w^-öabWwW^kl,} 

ü    k',k"  a,b=e,h 

x    [(1 _ /k'+k")/k"/k'+k + /k'+k"(! ~ /k")(! ~ /k'+k) ~ Pw+k"Pk"\ i (12) 

or couple different k-states, 

rk,k, = ^E E 5(-4-4'+k" + 4" + 4'+k)K-^H/k'W/k_k,] 
"-'     k"   a,b=e,h 

x [(i - /k
a)(i - /kVk")/£-+/k/kWi - /k") - jft+k'-Jv]. (is) 

where Wk is the screened Coulomb interaction which will be used in quasi-static RPA approximation 
(Lindhard formula), g(e) = -K5{E) + 'P^, and V denotes that the principal value of the corresponding 
integral has to be taken. 

To analyze the spin-polarization dependence of the scattering terms, additional spin indices of 
the carrier operator pairs contributing to fk and Pk would have to be added. To keep the notation 
as simple as possibe, we discuss in the following only the results of such a consideration. 

In Eqs. (12) and (13) we have assumed that the pump field is cirlularly polarized such that only 
one spin subsystem of the spin-degenerate electron and heavy-hole bands is excited. Then fk and 
Pk are the occupation probabilities and transition amplitude for this spin-subsystem. 

If the pump field equally excites both spin-subsystems, a factor of 2 has to be added to Wk, 
since the direct Coulomb interaction, described by this term, allows the scattering of carriers from 
one subsystem also with carriers from the other subsystem, which effectively doubles the scattering 
probability. However, the exchange interaction, described by 5at,Wk>Wk_k>i is limited to carriers of 
the same spin-subsystem. 

The corresponding correlation terms in Eq. (5) describe the changes of the carrier occupation 
probabilities fk due to scattering of carriers into the state with momentum k, 

sir = |EE [wi, - 5ahwk,wk„k,] 
°    k',k"  b=e,h 

x   o (ek +ek,+k„ — ek„ — ek,+kJ (1 — fk,+k„)fk„fk,+k, (14) 

due to scattering of carriers out of the k-state, 

sra = ^E E [K -SOWM-V] 
°    k',k"  b=e,h 

x   S (ea
k + 4,+k„ - 4„ - 4,+k) />,+k„(l - fb

k„)(l - /-+k), (15) 
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as well as due to nonlinear polarization interaction, 

^•a = 4E E [wt,-6abwk,wk^] 
°    k',k"  b=e,h 

x    {g (ea
k + 4+k„ - s{„ - el,+v) [(/k

a - /k
a,+k) PV+V.P^„ + c.c.,] 

+     9 (4 + 4'+k» - 4" - 4+k) [{ft" - fw+k") P^K'+k + cc]} . (16) 

For details, see Refs. [6, 19]. 
When the probe field has the same circular optical polarization as the pump field, the first set 

of correlation contributions to the probe polarization, I\ and I\k', are given by Eqs. (12) and (13), 
respectively. Note that with the last term of these equations, the pump-polarization Pk couples via 
direct and exchange Coulomb interaction to the probe polarization. 

The 6fk Fourier components of the carrier populations lead to additional correlations terms, 
r\ and rk,k'i which also promote direct coupling of the pump-polarization to the probe signal in 
Eq. (8). For co-circular pump and probe polarization, one finds 

rk = ^E   E  5(4 + 4+k"-4"-£k'+k)K-^H/k,wk_k,] 
k',k"  atb~e,h 

x     [—^ fk'+k" fk" fk'+k + ^/k'+k"(l — fk")0- ~ fk'+k) 

+ (1 — /k'+k")"/k"/k'+k — /k'+k""/k"(l — /k'+k) 

+ (1 — fk'+k")fk"° fk'+k ~ /k'+k"(l — fk")° fk'+k 

-iW»Pk*J , (17) 

k,k' k E E 9 (sa
k - 4'+k" + 4« + £k'+k) [K - <u wk,wk_k,] C2 

°     k"   a,b=e,h 

x    [Sft(l - ft'+k")ft" + 6fZti+k"(l - ft") 

-(1 - fk)Sft'+k"ft" + /k<5/k'+k»(l - ft") 

+ (1 — /k)(l — fk'+k")$fk" — fkfk'+k""fk" 

-p£+k»ä»l • (is) 

Note that in comparison to Eq. (12) and (13) the Fourier component oc e
l(K<-obc-kPumv)r are consif]_ 

ered by means of <5/k as well as the combination of pump and probe-polarizations. Similarly, the 
additional correlation terms in Eq. (11) are given by 

^r = f2 E E 5(4 + 4+k"-4"-^+k)K-^H/k^k_k,j 
k',k"   b—e,h 

X     [—d/k'+k"/k"/k'+k + (1 — /k'+k")"/k"/k'+k + (1 — fw+k")fw'°fk'+k\ ' (^) 

KlA = % E E s (4 + 4+k<< - 4- - 4'+k) K " *■* wvw*-w} 
0    k',k"  b=e,h 

x    [^+k»(l - /£«)(! - /k%k) - /k'+k"<5/k"(l - /k%k) " /k<+k»(l - /k-)^k%k] ■ (20) 
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°    k',k"  b=e,h 

x     \9 \£k + £k'+k" ~ £k" — £k'+k] 

x [(/£ - /k%k) W^» + (*/k° - <*/k%k) Pk'+k"Pk« + C.C.,] 

+     5 (£k + ek'+k" — £k" ~~ £k'+k) 

x [(/£« ~ /&+k») ä^kVk + (*/£» - */&+*») JW+k + c.c]} . (21) 

For opposite circular optical polarisation of pump and probe pulses various changes in the 
discussed equations are necessary: 

(I) The öfk Fourier components of the carrier populations do not occur since the electronic 
polarization driven in one spin-subsystem cannot couple to the optical field which excites the other 
spin-subsystem. Correspondingly, the diffraction of the pump field into probe direction and the 
nonlinear interaction of the pump-induced electronic polarization with the probe polarization are 
absent. 

(II) From the spin-dependence of the involved carrier operators it follows that (only) in Eq. (8), 
and in the Hartee-Fock and correlation terms of this equation, /£ and /k<+k are belonging to the 
spin-subsystem the probe pulse is interaction with. Since for cross-circular pump-probe excitation 
the pump field does not populate this spin subsystem and the weak probe field does not lead to 
population effects, /£ and /k<+k are zero in Eq. (8) and in the Hartee-Fock and correlation terms 
of this equation. Hence there are no phase-space filling and energy renormalization contributions 
of the pump field to the probe signal and the interaction-induced dephasing will be reduced. 

(III) The exchange contributions to the correlation terms oc 5ab W^>Wli_ii» do not contribute in 
Eq. (8) since the exchange interaction does not couple different spin subsystems. 

Note that all Hartree-Fock and correlation terms entering in Eqs. (2) and (5) are independent 
of the optical polarization of the probe field. 

3.2    Theory in x® anQl X^-Approximation 

Following is the Hamilton operator of the system, H — H0 + He + Hj, where H0 is the one-particle 
operator (containing the bandstructure), He contains the many-body Coulomb interaction (in so- 
called monopole-monopole approximation), and Hi is the explicitly time-dependent interaction 
with a classical electromagnetic field E (in dipole approximation, reasonable enough e.g. for a 
quantum well). Without Hj, the semiconductor is in its ground state, i.e. there are no (conduction) 
electrons and no holes. That's what later allows us to treat £ as a perturbation. The aim is to 
derive an equation of motion for the one-particle density matrix (a^a) via the Heisenberg equation 
—i§-t- = [H,-]. We distinguish between conduction and valence electrons (or electrons and holes), 
as in the Hamiltonian Hj the electric field couples to interband transitions only. Thus, we start 
with an equation for the interband coherence ("polarization") p(= Y) = (a\.ac). We find that p 
couples to the other one-particle density matrices /c(= C) = (alac) and /„(= D) = (a\,av), and 
also to two-particle density matrices of the type S and T (in the Axt/Victor notation). However, 
the " dynamics controlled truncation scheme" tells us how to expand these matrices into the purely 
coherent contributions p ("one transition"), and B ("two transitions"), and also, which terms to 
consider, if we want to include terms of a certain order in the electric field. Thus, we don't need 
equations for C and D. In third order (x^), we also don't need any higher transitions (see Victor 
et al.), so all that's left to do is to calculate the equation for B and neglect all terms higher than 
third order therein. We end up (schematically - no sums and indices included) with the terms not 
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marked with an arrow on the transparency. We have a closed system for p and B, which are coupled 
via the electric field E and the Coulomb interaction V. The matrix T in the homogeneous part is 
just the single particle contribution from HQ, which in our case (one-dimensional real-space tight- 
binding model) consists of the site energies (on the diagonal), and the next-neighbor coupling of 
the sites (right next to the diagonal). The model also includes two different conduction and valence 
band spins each, together with the appropriate selection rules, in order to describe the different 
polarization configurations. 

While B is just driven by Ep, the p-equation has both phase-space filling (Pauli) E(l — p*p) and 
Coulomb inhomogeneities Vp*B. (In earlier publications, we made a point of separating B into the 
Hartree-Fock part pp and a remaining ("correlation") part B. Leaving out B, which is driven by 
Vpp, then directly yields the Semiconductor Bloch Equations. 

When we go on to the next higher order (x^5'), two things happen. First, we have to include 
more terms in the equations for p and B (surprisingly the ones marked by an arrow); second, the 
coherent three-transition type quantity, W , appears, for which one should also write an equation. 
W , however, is neglected in all numerical simulations, for the single reason that one can't handle 
it in reasonable time, because it is a six-point function. What's more, even the unbound two- 
excitons contained in B can not be properly resolved due to the smallness of our model system; 
this problem would become even more prominent for unbound three-excitons. On the other hand, 
bound solutions (triexcitons), are not expected to play an important role. 

When calculating the pump-probe signal, we have two fields (pulses) E traveling in different 
directions. We then calculate p (and B) for each direction and order separately, which means we 
have a first order p in pump direction, a first order p in probe direction, higher order p's in probe 
direction, and also all the directions needed to construct these higher order signals. In all cases, 
terms quadratic or higher in the probe pulse are neglected (since it is supposed to be only a weak 
test pulse), that means a fifth order p consists of 4 times pump and 1 time probe. The detected 
signal in a given (in that case probe) direction is then built additively from the different orders in 
that direction (p = p(1) +p(3) +p(5)). 

-ihp   =   -Tp + Vp + E-Ep*p (22) 

+Ep*p*B + EB*pp - Ep*p*pp - \)EB*B 

+Vp*B + Vp*p*pB - VB*pB 

-ihB   =   -TB + VB + Ep-Ep*B (23) 

3.3    Nonlinear Pump-Probe Experiments 

The sample in these experiments has two Ino.04Gao.96As QW's placed at the antinodes of a 3A/2 
cavity formed by two 99.6%-reflectivity distributed Bragg reflectors (14 (16.5) periods of GaAs/AlAs 
on top (bottom) mirrors). The QW exciton transition at 1.487 eV (linewidth 0.7 meV) is resonant 
with the cavity mode at 10 K, where all experiments were performed. The normal-mode splitting on 
resonance is 4.5 meV. The output of 85-MHz mode-locked Ti:sapphire laser producing 75-fs pulses 
centered at 831 nm has been used as the light source of the pump-probe set up. The pump pulses 
were generated by spectral filtering the laser output. The pump pulse was selectively resonant with 
only the upper or lower mode, with pulse durations of 190-fs, or excites both modes simultaneously. 
The spectral filter provided a very high contrast ratio, so that the intensity of the pump (probe) at 
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the upper (lower) mode was less than 10"3 of its intensity at the lower (upper) mode; hence any 
effects due to spectral overlap of the pump and probe are completely unobservable. The pump and 
probe beams were overlapped on the sample at near normal incidence; the pump (probe) diameter 
was 35(20) /«n, and the probe fluence was always less than 10~2 that of the pump. Probe reflectance 
spectra were recorded on an optical multichannel analyzer. 

3.4    Probe Nonlinear Response in Coherent Regime 

We investigated the optical nonlinear response of the normal modes in coherent regime. Figure 5 
shows the probe reflectance spectra for co-circular configuration when the lower mode is excited. 
The probe time delay was set around 0 ps. The data were measured for various cavity detuning (6 = 
Ec — Eex) and pump fluence conditions. Some features of the nonlinear responses are noteworthy. 
First, the lower-mode undergoes substantial lineshift to the blue side. The blueshift and the mode 
amplitude increase with pump fluence. The lineshift is more prominent in positive detuning than 
in negative detuning. Second, the upper-mode also shows the blueshift with much less amount. 
Unlike the lower-mode, the upper mode saturates and the linewidth broadens at high pump fluence. 
Overall, the normal mode splitting reduces at high carrier density, which may be accounted by the 
phase space filling. Third, a gain peak appears at the red side of the lower mode. The peak 
amplitude increases with the pump fluences. Its relative size to the lower mode is bigger and the 
linewidth is wider in the positive detuning than in the negative detuning. 

The normal-mode spectra for cross-circular polarization are demonstrated in Fig. 6. The optical 
nonlinear responses show distinctive characteristics relying on the pump-probe polarization. The 
probe spectra for cross-circular configuration are less susceptible to the pump fluence than for co- 
circular polarization. Furthermore, the nonlinear response is weaker in negative detuning than 
in positive detuning. The gain peak for the co-circular polarization is absent for cross-circular 
excitation and a slight red shift occurs. The prominent feature of the cross-circular configuration 
is the appearance of the new resonance at the red side of the upper mode. The new mode may 
be accounted by bi-excitonic transition. The bi-excitonic mode is not noticeable up to a certain 
pump fluence. The critical pump fluence increases as the cavity detuning, because the bi-excitonic 
binding energy increases with the cavity detuning. It is clearly shown in the data that the bi- 
excitonic binding energy in positive detuning is bigger than in negative detuning. With increasing 
carrier density, the biexcitonic mode grows as the upper mode fades away, because of the depletion 
of the ground states and the increase of the lower-mode population. When the positive detuning 
is over a certain limit (>0.9 meV), the biexcitonic mode does not appear even at high excitation 
level. Instead, a new spectrum emerges at the red side of the lower mode. 

The semiconductor Bloch equations incorporated with phenomenological excitation induced de- 
phasing (EID) has been applied to account for many optical nonlinear responses in QW system. 
The model can account for the reduction of the mode splitting and the spectral broadening in QW 
microcavity system, but it fails to explain the other features we have observed in the experiment. 
Thus, the Coulomb interaction terms beyond the Hartree-Fock level are required to account for 
the foremost normal-mode nonlinearities such as the lineshift and the gain peak for co-circular 
excitation and the bi-excitonic mode for cross-circular exctation. 

The calculations with Coulomb correlations in second-order Born approximation are shown in 
Fig. 7. The Rabi energy of the pump pulse - in units of the Rydberg energy - refers to the pulse 
before the blue side of the spectrum (about 45 %) is blocked. The calculated results reproduce the 
gain at the red side of the lower mode for co-circular polarization. Like in the experiment, this 
gain is absent for cross-circular polarization. Co-circular polarization and strong pumping leads to 
oscillations in the probe reflection spectra due to diffraction of the pump pulse in probe direction 
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Figure 5: Measured probe reflectance spectra for co-circularly polarized pump and probe when the 
lower mode is excited. The probe time delay is set to 0.0 ps. (a) 6=1.0 meV, Ip=0A (solid), 2.0 
(dashed), and 6.8 (dashed-dot) /xJ/cm2 per pulse, (b) 8=0.5 meV, 7P=0.8 (solid), 2.7 (dashed), and 
8.2 (dashed-dot) /iJ/cm2 per pulse, (c) 5=0.0 meV, 7P=0.8 (solid), 3.4 (dashed), and 7.2 (dashed- 
dot) /iJ/cm2 per pulse, (d) <5=-1.0 meV, Ip=0A (solid), 2.0 (dashed), and 6.4 (dashed-dot) /zJ/cm2 

per pulse. 
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Figure 6: Measured probe reflectance spectra for cross-circularly polarized pump and probe when 
the lower mode is excited. The probe time delay is set to 0.0 ps. (a) <5=1.0 meV, 7P=0.8 (solid), 4.1 
(dashed), and 8.2 (dashed-dot) /xJ/cm2 per pulse, (b) 5—0.5 meV, 7P=0.8 (solid), 2.0 (dashed), and 
8.2 (dashed-dot) ßJ/cm2 per pulse, (c) <5=0.0 meV, 7P=0.8 (solid), 4.1 (dashed), and 8.2 (dashed- 
dot) ßJ/cra2 per pulse, (d) 5=-1.0 meV, 7P=0.4 (solid), 0.8 (dashed), and 6.4 (dashed-dot) /zJ/cm2 

per pulse. 
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Figure 7: Calculated probe reflectivity spectra based on the second-order Born approximation 
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(propagating modes interfere). This effect is not present for cross-circular excitation due to the 
absence of population pulsations (and self-diffraction) for this geometry. Co-circular polarization 
leads to a stronger saturation of the upper mode than cross-circular polarization (in agreement 
with the corresponding experimental figures), because ,for cross-circular polarization, part of the 
dephasing-terms do not contribute as a result of their spin dependence. Ever for strong pumping 
and cross-circular polarization, two reflection dips are present (broadening with nearly constant 
splitting). Co-circular exciation leads to a pronounced blue shift of the normal-mode peaks whereas 
for cross-circular excitation only a weak red shift occurs (in nice agreement with the experiment and 
our previous QW results). The bi-exciton resonance for cross-circular configuration does not appear 
in 2nd Born calculations. The second Born approximation contains Coulomb interaction terms up 
to quadratic order in the screened Coulomb interaction, and more than three particle scattering is 
neglected. Thus, bi-exciton bound state does not appear in the approximation. 

Figure 8 shows the calculations of the x^ formalism. The gain peak at the red side of the lower 
mode is reproduced for co-circular polarization. For cross-circular configuration, the bi-excitonic 
mode appears at the red side of the upper mode. The theory does not represent the line shift 
and the strong saturation observed in the experiment, because the x^ formalism includes only the 
purely coherent contributions and no scattering term contributing the saturation is included. 

The second-order Born approximation as well as the x^5'-treatment nicely reproduce that for 
co-circular polarization the gain peak near lower mode increases at elevated pump intensities. The 
additional broadening due to interaction-induced dephasing, which results in an initial decrease 
of the lower-mode peak for moderate pump intensities as well as the proper order of magnitude 
for lineshift and broadening are only reproduced by the calculation in Born approximation. How- 
ever, this model cannot describe the emergence of a sidepeak of the upper mode for cross-circular 
polarization as an indication of the biexcitonic resonance. This feature is well reproduced in the 
X^'-calculation and is even visible in a calculation on the x^3' level. 

3.5     Temporal Evolution of NMC Nonlinearities 

The normal-mode spectrum itself reflects the frequency components contributing to the time re- 
solved probe signal. The dynamics of the normal modes can be accessed by varying the delay 
between the pump and probe pulses. Figure 9 shows the time-resolved differential probe reflection 
(DR) spectra for various spectral shapes of the pump pulse. The pump spectra are shown in Fig. 9. 
When both modes are pumped (Fig. 9(b)), fast temporal oscillations of the DR around zero pump- 
probe delay can be observed. The oscillation period of 0.9 ps corresponding to the Rabi splitting of 
the normal modes. The oscillation amplitude is much stronger in the lower mode than in the upper 
mode since in connection with an asymmetric exciton spectrum the upper mode exhibits a stronger 
brodening [6]. For lower-mode excitation (Fig. 9(c)) the DR signal decays within a few picoseconds 
and the upper mode signal is much weaker than the lower mode signal. Since in this case the pump 
spectrum has strongly reduced overlap with the QW exciton absorption, the frequency components 
in the pump-induced polarization corresponding to absorptive states are much weaker and carier 
scattering is strongly suppressed. Only a small portion of incoherent carriers can be excited and 
the major part of the coherent pump-induced polarization decays radiatively within 5 ps. At longer 
time delay, the nonlinear response for both and upper mode pumping (Fig. 9(b) and (d)) is much 
stronger than for lower mode pumping because of the higher incoherent population. 

Dynamics of the fast oscillation and the gain peak at the lower mode for both-mode pumping is 
shown in Fig. 10. The reflection spectra of the polariton modes are demonstrated between t=-4.67 
and 1.33 ps with a time step of 0.33 ps. The fast oscillation in Fig. 5(b) is clearly seen in the lower 
mode reflection spectra, though it is not quite clear in the upper mode. Besides, as time goes by, the 
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Figure 9: (a) Pump spectra for both-mode, upper mode and lower mode pumping. Time-resolved 
differential reflectivity spectra of polariton modes in the QW microcavity when (b) both modes, (c) 
the lower mode, and (d) the upper mode is pumped. Pump fluence is 4.8 //J/cm2 per pulse before 
the spectral filtering. The pump and probe pulses are co-circularly polarized. 
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Figure 10: Reflection spectra of the polariton modes for various time delays between the pump 
and probe pulses from -4.67 to 1.33 ps. Each spectrum is vertically displaced, and the time delay 
between the sectra is 0.33 ps. 
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Figure 11: Time-resolved differential reflectiviy at (a) the upper and (b) the lower mode resonance 
wavelength. The cavity detuning (5) is -1.5 meV(open square) and 1.6 meV(solid square). The 
resonance wavelength of the lower mode is 832.72nm (£=-1.5 meV) and 831.52 nm («5=1.6 meV), and 
the resonance wavelength of the upper mode is 829.93 nm (£=-1.5 meV) and 828.81 nm (<5=1.6 meV). 

polariton modes are shifted to the blue side, because the exchange interaction terms contributing 
to the nonlinear signal always produces a blue shift of the exciton. Around t=0, temporal evolution 
of the gain peak at the red side of the lower mode is shown. The peak grows and decays within a 
few picoseconds, and the peak shifts to the red side as time goes by. 

We observed the time-resolved DR for the lower mode pumping at the normal mode resonance 
wavelengths when the cavity detuning is -1.5 and 1.6 meV in order to study the decay of the DR. 
signal (Fig. 11. In the negative (positive) detuning, the proportion of the cavity photon (exciton) 
mode in the lower mode polariton is larger than of the exciton (cavity photon) mode. Thus, the 
radiative decay time of the lower mode polariton in the negative detuning is faster than in the 
positive detuning. 

3.6     Conclusions 

The strong broadening and lineshift effects, which are clearly observable in the experimental spectra 
for elevated pump intensities are well reproduced with the theory in second-order Born approxima- 
tion while the x'3' and x^-treatment leads only weak shift and broadening contributions. Both 
theories can account for the gain at the red side of the lower normal mode for co-circular optical po- 
larization as a coherent scattering of the pump signal into probe direction. Only the full treatment 
of Coulomb correlations up to x(3) and x(5) contributions reproduces the biexcitonic sidepeak in the 
normal-mode spectra for cross-circular polarization and zero pump-probe delay, which is practically 
absent for a pump-probe delay of 1 ps. 
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